高分子材料的摩擦磨損機(jī)理
高分子材料的摩擦學(xué)行為規(guī)律具有強(qiáng)的系統(tǒng)依賴性,而且材料的磨損與其摩擦系數(shù)并不具有明確的相關(guān)性,因此需要分別討論摩擦機(jī)理和磨損機(jī)理。
高分子摩擦的有關(guān)理論
由于聚四氟乙烯(PTFE,F4或4F)在高分子材料摩擦學(xué)中占有非常重要的地位,它的用途相當(dāng)廣泛,從普通機(jī)械到有苛刻使用條件的裝置上都在使用。人們很早就對(duì)PTFE的摩擦機(jī)理作了比較深入的探討,而從這些研究得到的認(rèn)識(shí)又往往被直接移用到其他高分子材料上,因此,在討論高分子材料的摩擦理論之前,先來考察PTFE的摩擦機(jī)理,然后逐步推廣可以得到高分子摩擦的相關(guān)理論。
PTFE類高分子材料具有特殊的摩擦性質(zhì)。當(dāng)這類材料的滑塊在光滑與潔凈的表面上低速滑行時(shí),起始階段的摩擦系數(shù)相當(dāng)高(達(dá)0.2~0.3);這時(shí),有部分“團(tuán)塊"轉(zhuǎn)移到對(duì)摩表面上去,這些“團(tuán)塊"的厚度為0.1~10μm;一般來說,若繼續(xù)運(yùn)動(dòng),摩擦系數(shù)就會(huì)急劇下降,而且PTFE將以薄膜形式轉(zhuǎn)移到對(duì)摩面上;這層薄膜在對(duì)摩面上緊密貼合,薄膜的大分子依照運(yùn)動(dòng)方向高度定向;很顯然,這層轉(zhuǎn)移膜與高分子基體一樣,表面能很低,與對(duì)摩表面的黏著一開始很輕微;初始的黏著狀態(tài)一旦被滑塊接觸區(qū)周圍的物料克服,高分子材料內(nèi)部的大分子就很容易被拉出結(jié)晶區(qū)而按滑動(dòng)方向定向;這不依賴于它們的結(jié)晶度或分子量,似乎主要與分子鏈的光滑外形有關(guān)。為了進(jìn)一步了解PTFE的摩擦機(jī)理,首先要認(rèn)識(shí)它的分子結(jié)構(gòu)。
1.聚四氟乙烯的分子結(jié)構(gòu)
1938年,杜邦公司的羅伊·普朗克特偶然間發(fā)現(xiàn)了PTFE,并且在十年內(nèi)完成商業(yè)化生產(chǎn)設(shè)施的建立,使PTFE得到普及。通常,PTFE是由四氟乙烯氣體分子在一定壓力下的水溶液中通過自由基聚合而成,相對(duì)分子質(zhì)量可高達(dá)10?。聚合后產(chǎn)生光滑的線性鏈,而沒有分支或大的側(cè)基,其結(jié)構(gòu)式如圖5-32所示。圖5-32PTFE的結(jié)構(gòu)式此大分子主鏈上的碳原子間以及碳原子與氟原子之間的單鍵,可以作有限的自由轉(zhuǎn)動(dòng)。C—C的鍵能為347.0kJ/mol,C—F的鍵能為427.9kJ/mol,是已知鍵能中較強(qiáng)的(C—N的鍵能只有288.9kJ/mol,C—I的鍵能只有219.4kJ/mol)。所以,PTFE分子內(nèi)結(jié)合牢固。與平面鋸齒形的聚乙烯鏈的碳骨架(其每個(gè)CH?基都能夠沿著它相鄰的鍵旋轉(zhuǎn)180°)不同,PTFE的碳鏈骨架必須采取螺旋構(gòu)象以沿著它的長(zhǎng)度去適應(yīng)尺寸更大的氟原子,PTFE的大分子構(gòu)型如圖5-33所示。在19℃或更低的溫度中,PTFE為三斜晶系,螺旋形大分子中每13個(gè)碳原子扭轉(zhuǎn)180°,其軸向間距為1.7nm;在高于19℃時(shí)變?yōu)榱骄?/span>系,每15個(gè)碳原子扭轉(zhuǎn)180°,軸向間距為2nm。這種由溫度變化引起的大分子鏈型式的轉(zhuǎn)變可以引起PTFE的比容有1%的突變。
2.聚四氟乙烯分子結(jié)構(gòu)的特點(diǎn)
(1)C—C鍵與C—F鍵結(jié)合能大,分子內(nèi)結(jié)合牢固,而分子間結(jié)合為范德華力,結(jié)合力弱。所以,相比之下,分子鏈不易斷裂與分解,而大分子較易于解脫與滑移。
(2)相鄰大分子的氟原子的負(fù)電荷有相斥作用,導(dǎo)致了極低的內(nèi)聚力。這與已經(jīng)觀測(cè)到的短鏈氟化的烴類具有很低的表面張力的結(jié)果是一致的。例如,氟化
烴的表面張力為12×10~3N/m,而非氟化烴的為30×10-3N/m。水在聚四氟乙烯上的接觸角很大(約110°),也說明了這一點(diǎn)。因此,兩塊聚四氟乙烯之間固有黏著力很小。
(3)由于氟原子體積大,又相互排斥,以致整個(gè)大分子鏈不能呈平面鋸齒形而呈螺旋形,并且比較僵硬。大分子鏈的這種硬棒狀特性,加上上面所說的分子間引力小,使得它的熔體黏度高,不溶于任何溶劑,具有表面不黏性與潤(rùn)滑性等。
(4)分子鏈沒有支鏈。通過X射線衍射的研究發(fā)現(xiàn),PTFE大分子的外部由分布得相當(dāng)平滑的電子所包圍,分子呈柱狀的“流線型"結(jié)構(gòu),這也使得分子間的相互作用大大減小。
3.聚四氟乙烯的凝聚態(tài)結(jié)構(gòu)
由于PTFE具有平滑和線性的分子結(jié)構(gòu),通過聚合所得到的粉料其結(jié)晶度可高達(dá)92%~98%,熔點(diǎn)在大約342℃;然而,由于其具有極其高的相對(duì)分子質(zhì)量,PTFE在這種溫度下并不真正地熔融。因此,PTFE的成型通常采用冷壓后燒結(jié)工藝,而在加壓燒結(jié)之前,PTFE復(fù)合材料可以通過簡(jiǎn)單地混合填料顆粒和PTFE粉末而形成。
人們通常認(rèn)為經(jīng)過燒結(jié)的PTFE會(huì)形成“段"狀的微觀結(jié)構(gòu)(圖5-34),其中分子鏈與鏈軸在薄晶片的平面內(nèi)方向是平行的;晶片之間由無定形區(qū)分開,它們堆積在一起形成PTFE的“段"狀結(jié)構(gòu)。通過觀察斷面上沿著“段"的長(zhǎng)度方向上的條紋間距,經(jīng)過推斷認(rèn)為晶片厚度大致在20~30nm范圍內(nèi)。
4.高分子材料的摩擦學(xué)說
(1)轉(zhuǎn)移說。此理論在20世紀(jì)50年代被提出,隨后得以不斷發(fā)展與完善,這是被廣泛地用來解釋高分子材料摩擦機(jī)理的學(xué)說,以至于一提到高分子材料摩擦,幾乎所有的文獻(xiàn)都用到“轉(zhuǎn)移"這個(gè)詞[19]。以半結(jié)晶性的PTFE為例來說,當(dāng)它與其他物體對(duì)摩時(shí),由于PTFE的大分子容易被拉出結(jié)晶區(qū),因而在摩擦之初就向?qū)?/span>摩面轉(zhuǎn)移,以庫侖力和分子間作用力在對(duì)摩面上形成一層20~30nm厚的薄膜(另一說厚度僅為0.56nm)。構(gòu)成這層薄膜的分子沿著滑動(dòng)方向高度定向,從而變成了PTFE之間的摩擦。在較高溫度下或其他特殊情況下,因?yàn)?/span>這時(shí)從表層中拉扯出來的是晶片而不是分子鏈,轉(zhuǎn)移膜也可能增厚。
圖5-34聚四氟乙烯的聚集態(tài)結(jié)構(gòu)
PTFE之所以向?qū)δγ孓D(zhuǎn)移是由于其內(nèi)聚能小,分子間結(jié)合力弱。PTFE間摩擦力小是由于其分子結(jié)構(gòu)呈螺旋形、僵硬的棒狀,以及氟原子間的排斥作用等;由于PTFE光滑的大分子鏈,使其在對(duì)摩面的轉(zhuǎn)移膜上相互容易滑動(dòng),而且不會(huì)繼續(xù)拉扯出其它分子鏈,從而使摩擦系數(shù)較低,轉(zhuǎn)移膜增厚的趨勢(shì)也很小,因此磨損降低。這一點(diǎn)可以從另一個(gè)角度進(jìn)行證明:若在大分子的鏈上引入等距離的大側(cè)基基團(tuán),則摩擦力、轉(zhuǎn)移程度和磨損都增高;例如聚丙烯、低密度聚乙烯以及聚三氟氯乙烯等高分子都具有一定程度的側(cè)基基團(tuán),在滑動(dòng)過程中作用較強(qiáng)而造成表面應(yīng)變較大。
根據(jù)目前的資料可以認(rèn)為:高分子材料若具有與PTFE及聚乙烯那樣光滑的大分子鏈外形,同時(shí)具有較低的分子間力,則可以出現(xiàn)上述的因轉(zhuǎn)移而易于滑動(dòng)的低摩擦行為,比如全同立構(gòu)聚苯乙烯就可能屬于此類高分子;反之,摩擦就會(huì)加劇,比如聚對(duì)苯二甲酸乙二醇酯(PET)的大分子鏈的主鏈上有體積較大的苯環(huán),而且支鏈結(jié)構(gòu)又不對(duì)稱,當(dāng)PTFE與之相接觸過程中,即使只是輕微接觸時(shí)也表現(xiàn)出強(qiáng)烈的相互吸引、黏著的趨勢(shì)。對(duì)摩過程開始后,立即有PTFE轉(zhuǎn)移到PET上(估計(jì)是PTFE的單分子覆蓋),除了發(fā)生質(zhì)量轉(zhuǎn)移外,因作用力較強(qiáng)同時(shí)還發(fā)生了化學(xué)鍵的斷裂;同時(shí),PTFE表面上也出現(xiàn)了PET的轉(zhuǎn)移。
在兩種情況下,聚四氟乙烯向?qū)δγ娴霓D(zhuǎn)移將出現(xiàn)困難:
①當(dāng)對(duì)摩面的粗糙度較高時(shí),如超過幾個(gè)微米;
②當(dāng)滑動(dòng)速度較高,或本體溫度較低時(shí),拉出分子鏈的力與在另一個(gè)表面上滑動(dòng)的力會(huì)使PTFE屈服而撕裂形成大的團(tuán)塊而不是轉(zhuǎn)移膜。
上述第二種情況出現(xiàn)的原因是由于分子鏈的運(yùn)動(dòng)為半自動(dòng)應(yīng)力熱活化過程,在較高的滑動(dòng)速度下(如每秒相對(duì)滑動(dòng)達(dá)幾米時(shí)),摩擦熱被增加了的剪切速率所補(bǔ)償,分子鏈間的滑動(dòng)又重新變得比較容易。當(dāng)滑動(dòng)速度很高時(shí),高分子材料表面會(huì)熔化,若產(chǎn)生的摩擦熱未傳導(dǎo)至高分子材料內(nèi)部(使之軟化),其摩擦與磨損都可能減小。但如果滑動(dòng)產(chǎn)生過高的溫度,會(huì)使高分子材料出現(xiàn)氧化或分解。
(2)轉(zhuǎn)移與依附說[19]。研究發(fā)現(xiàn),PTFE與其他材料對(duì)摩時(shí),在對(duì)摩面上形成的薄膜是由轉(zhuǎn)移膜與依附層編織而成。據(jù)研究發(fā)現(xiàn),即使采用精密摩擦副,且經(jīng)過仔細(xì)磨合,由于存在宏觀的不平度、不直度、不圓度等幾何誤差以及尺寸誤差等因素,名義接觸面積只有450mm2的滑塊,即便在宏觀上與對(duì)摩面也不可能達(dá)到密合的程度。這會(huì)造成有一些區(qū)域根本不存在接觸點(diǎn),比如長(zhǎng)方形滑塊中可能有一個(gè)角或一側(cè)或中部某一部位不接觸。從另一個(gè)角度來看,由于表面上存在微觀粗糙度,在實(shí)際接觸區(qū)域內(nèi)部也只是突出部位的凸峰與對(duì)摩面接觸,真實(shí)接觸面積非常小。比如鋼平板間的真實(shí)接觸面積只是名義接觸面積的1%~1%o(與載荷、表面粗糙度、幾何精度等因素相關(guān)),而通常高分子材料對(duì)摩面的真實(shí)接觸面積比較大。
用于防護(hù)的固體潤(rùn)滑膜,通常采用噴涂、蒸涂、濺射、電鍍及電泳等化學(xué)或物理方法制備得到;此材料屬于完整的、覆蓋整個(gè)表面的薄膜。而PTFE與金屬對(duì)摩過程中,只是在真實(shí)接觸區(qū)域才會(huì)形成轉(zhuǎn)移膜。由于幾何精度及偏壓等因素,PTFE與金屬的對(duì)摩面中未接觸的區(qū)域不會(huì)存在轉(zhuǎn)移膜,因此,轉(zhuǎn)移膜并非一張完整的、覆蓋整個(gè)名義接觸面積的薄膜;在接觸區(qū)域內(nèi),轉(zhuǎn)移膜也只是存在于真正直接接觸的部位。因此通常所說的PTFE的“轉(zhuǎn)移膜"是既不太規(guī)整又不太連續(xù)的薄膜;確切地說,它只是許多微小而又互相孤立的薄膜的統(tǒng)稱。然而,無論從宏觀測(cè)定還是從微觀上觀察,都會(huì)發(fā)現(xiàn)PTFE在對(duì)摩面上覆蓋的面積遠(yuǎn)遠(yuǎn)超過其真實(shí)接觸面積,這是因?yàn)樵谵D(zhuǎn)移膜之外還存在PTFE的依附層。依附層的特征如下;
①依附層在兩對(duì)摩面的分布是大體均勻卻不連續(xù),是由依附于接觸區(qū)域周圍與真實(shí)接觸區(qū)域周圍的PTFE磨屑形成,厚度也不統(tǒng)一。
②依附層并非固定不動(dòng)。
③依附層的形成改善了兩對(duì)摩面的粗糙度。
④依附層有利于摩擦過程中形成轉(zhuǎn)移膜。
⑤依附層的存在使接觸表面的摩擦狀況改善,并使磨損降低。
已經(jīng)通過實(shí)驗(yàn)找到了依附層的存在的證據(jù):在未接觸過的區(qū)域中發(fā)現(xiàn)了PTFE。因此,可進(jìn)行如下分析:在與PTFE對(duì)摩過的金屬對(duì)摩面上,每個(gè)轉(zhuǎn)移膜區(qū)域周圍存在依附膜,而每個(gè)依附膜區(qū)域的周圍是轉(zhuǎn)移膜;最終,大體上連續(xù)的PTFE表層由所存在的轉(zhuǎn)移膜與依附膜交織而形成。
雖在工程實(shí)際中已經(jīng)開始運(yùn)用轉(zhuǎn)移膜與依附層,例如,根據(jù)此理論,就可以預(yù)先在PTFE的對(duì)摩面上(用另外的PTFE件)進(jìn)行轉(zhuǎn)移與依附處理,從而減少使用時(shí)的摩擦與磨損,但在理論上有必要進(jìn)一步探討。
(3)黏著學(xué)說。簡(jiǎn)單的黏著理論最初是在研究金屬干摩擦過程中提出的,此理論認(rèn)為真實(shí)接觸點(diǎn)上接觸應(yīng)力很大,產(chǎn)生塑性變形,形成牢固的黏結(jié)合,這就是黏著。在切向力作用下,這些黏結(jié)點(diǎn)發(fā)生斷裂,接著會(huì)發(fā)生滑動(dòng)。所謂摩擦就是黏著與滑動(dòng)交替進(jìn)行的過程,而交錯(cuò)排列的兩表面間凸峰阻擋作用幾乎可忽略。修正的黏著理論認(rèn)為,法向載荷與切向力共同作用的結(jié)果使黏結(jié)點(diǎn)增大;有污染膜的干摩擦黏著理論則認(rèn)為,在存在污染膜的情況下,黏著減輕,滑動(dòng)變得較為容易[79]。就高分子材料干摩擦來說,許多學(xué)者都認(rèn)為,通常可以用金屬的黏著和滑動(dòng)機(jī)理來闡明。黏著理論已經(jīng)在金屬摩擦學(xué)中占據(jù)著重要地位,特別是經(jīng)過修正后,相關(guān)理論研究已經(jīng)很深入,而且已為大量實(shí)驗(yàn)與工程實(shí)際應(yīng)用的事例所驗(yàn)證。然而,人們對(duì)于高分子材料黏著的研究和討論還不夠充分,迄今為止還有許多問題有待探討。其基本的討論如下:
通常認(rèn)為,高分子材料的黏著比金屬弱,已經(jīng)有資料對(duì)此進(jìn)行闡明。當(dāng)用黏著系數(shù)(等于拉力與垂直力之比)來衡量材料的黏著強(qiáng)弱程度(表5-9),高分子材料的黏著系數(shù)比金屬以及其他非金屬材料的小很多。因此,當(dāng)將一種硬材料(比如鋼)在一種相對(duì)軟的材料(比如高分子材料)上滑動(dòng)時(shí),存在兩種主要的物理作用支配著此體系的摩擦行為:一種是黏著作用,還有一種作用是體系的形變。
表5-9幾種材料的黏著系數(shù)
材料 | 黏著系數(shù) |
金剛石 | 1 |
玻璃 | 1 |
碳化鎢 | 1 |
金屬(Fe,Cd,Zn,Co,Ag等) | 1 |
Cu,Ag的厚氧化膜 | 1 |
聚苯乙烯 | 0.5~0.7 |
聚四氟乙烯 | 0* |
*聚四氟乙烯的數(shù)值推測(cè)為“0"。 |
(4)二項(xiàng)式定律。蘇聯(lián)學(xué)者克拉蓋爾斯基等人認(rèn)為滑動(dòng)摩擦是克服表面粗糙峰的機(jī)械嚙合和分子吸引力的過程,因而摩擦力就是機(jī)械和分子作用阻力的總和。摩擦二項(xiàng)式定律經(jīng)實(shí)驗(yàn)證實(shí)非常適合于邊界潤(rùn)滑,也適用于某些干摩擦狀態(tài),特別是實(shí)際接觸面積較大的摩擦問題,例如決定堤壩與巖面基礎(chǔ)的滑動(dòng)以及計(jì)算黏接接頭的承載能力,一般來說此理論對(duì)解釋高分子材料摩擦行為有比較大的作用。
歡迎您關(guān)注我們的微信公眾號(hào)了解更多信息
電話
微信掃一掃